bookbestseller Posted 20 hours ago Report Share Posted 20 hours ago Introduction to Transfer Learning: Algorithms and Practice (Machine Learning: Foundations, Methodologies, and Applications) by Jindong Wang, Yiqiang ChenEnglish | March 31, 2023 | ISBN: 9811975833 | 350 pages | MOBI | 33 MbTransfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning.This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a "student's" perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.[b]Uploady[/b]https://uploady.io/ccemgwup2gbx/1hzy9.7zRapidGatorhttps://rg.to/file/f1aafeadd0a6185ddec49766fa5ea038/1hzy9.7z.html[b]UploadCloud[/b]https://www.uploadcloud.pro/l6kacj566u6k/1hzy9.7z.htmlFikperhttps://fikper.com/BIboVBdKgf/1hzy9.7z.htmlFreeDLhttps://frdl.io/9wft8h4k8lel/1hzy9.7z.html Link to comment Share on other sites More sharing options...
Recommended Posts
Please sign in to comment
You will be able to leave a comment after signing in
Sign In Now