kingers Posted April 22 Report Share Posted April 22 8.21 GB | 14min 56s | mp4 | 1280X720 | 16:9Genre:eLearning |Language:EnglishFiles Included :1 Introduction to 5 Projects in Prompt Engineering, Generative AI and Data Science.mp4 (13.27 MB)3 About me, Diogo.mp4 (21.47 MB)4 Unlimited Updates 2025.mp4 (27.04 MB)6 Setting Up Google Colab.mp4 (47.53 MB)7 Setting Up Jupyter Notebook.mp4 (137.98 MB)8 Installing R and RStudio.mp4 (10.53 MB)1 Game Plan for Basics of Prompt Engineering.mp4 (29.69 MB)10 Scientific Research on Chain of Thoughts.mp4 (95.33 MB)11 Key Learnings and Outcomes Prompt Engineering Basics.mp4 (34.22 MB)2 Understanding Transformers.mp4 (61.22 MB)3 Attention Mechanisms in NLP.mp4 (17.51 MB)4 Prompt Engineering Techniques.mp4 (51.71 MB)5 Setting Up the LM Studio.mp4 (90.52 MB)6 LM Studio - Explicit Instructions and One-Shot.mp4 (193.44 MB)7 LM Studio - Few-Shot.mp4 (148.18 MB)8 LLMs are Few-Shot Learners.mp4 (43.54 MB)9 LM Studio - Chain of Thoughts.mp4 (158.17 MB)1 Game Plan for Prompt Engineering with System Message and LLM Parameters.mp4 (39.05 MB)10 LM Studio - Breaking the System Message Part 2.mp4 (41.18 MB)12 Understanding Generation Model Parameters.mp4 (16.42 MB)13 LM Studio - Parameters.mp4 (102.5 MB)14 Key Learnings and Outcomes System Message and LLM Parameters.mp4 (40.6 MB)2 Tokenization.mp4 (66.51 MB)3 OpenAI Tokenizer.mp4 (69.85 MB)4 Rock-Paper-Scissors, Dices and Strawberries.mp4 (138.3 MB)5 System Message.mp4 (59.29 MB)6 LM Studio - System Message.mp4 (147.29 MB)8 LM Studio - Breaking the System Message Part 1.mp4 (18.22 MB)1 Game Plan for Reasoning and Hallucinations.mp4 (28.07 MB)2 Meta Prompting.mp4 (154.43 MB)3 Analogical Reasoning Prompting.mp4 (72.16 MB)4 Rephrase and Respond.mp4 (82.72 MB)5 According-to Prompting.mp4 (108.22 MB)6 Multi-Persona Collaboration.mp4 (112.42 MB)7 Emotion Prompting.mp4 (78.44 MB)8 Key Learnings and Outcomes Reasoning and Hallucinations for LLMs.mp4 (85.53 MB)1 Game Plan LLM Reasoning Models.mp4 (44.93 MB)2 How LLM Reasoning Models work.mp4 (42.45 MB)3 Prompting Reasoning Models (OpenAI Focus).mp4 (65.2 MB)4 Overthinking - LLM Reasoning Prompt Injection.mp4 (47.8 MB)5 Overthinking in Action.mp4 (71.85 MB)6 LLMs can't Reason - Apple Research Paper.mp4 (77.18 MB)1 Game Plan for OpenAI API.mp4 (37.81 MB)2 OpenAI API for Text.mp4 (23.84 MB)3 Python - Setting Up OpenAI API Key.mp4 (57.17 MB)4 Python - OpenAI API Setup.mp4 (91.51 MB)5 Python - Generating Text with OpenAI API.mp4 (84.62 MB)6 Python - OpenAI API Parameters.mp4 (94.35 MB)7 Python - OpenAI API with Few-Shot.mp4 (115.06 MB)8 Key Learning and Outcomes OpenAI API for Text.mp4 (35.27 MB)1 Project Introduction Can GPT play rock paper scissors.mp4 (48.1 MB)2 Python - OpenAI API Setup.mp4 (38.73 MB)3 Python - Random Playing Strategy.mp4 (61.05 MB)4 Python - Iteratively Improving the System Prompt.mp4 (73.78 MB)5 Python - Testing Temperature Parameters.mp4 (57.42 MB)6 Python - New Strategy Change if Defeat.mp4 (67.72 MB)7 Python - Building Functions to Play Game.mp4 (159.26 MB)8 Python - New Strategy The Analyst.mp4 (74.52 MB)9 Python - Testing Strategies.mp4 (77.91 MB)1 Game Plan for OpenAI API for Images.mp4 (67.75 MB)2 Python - OpenAI API Setup.mp4 (87.51 MB)3 Python - Analyzing images from Links.mp4 (128.01 MB)4 Python - Encoding Images.mp4 (44.81 MB)5 Python - Analyzing Images from base64.mp4 (56.74 MB)6 Python - Adding Google Searches.mp4 (160.68 MB)1 Game Plan for Random Forest.mp4 (27.12 MB)10 Evaluation metrics for Classication Problems Part 2.mp4 (30.41 MB)11 Python - Assessing Classification Model.mp4 (51.22 MB)12 Python - Parameter Tuning.mp4 (64.63 MB)13 Python - Parameter Tuning.mp4 (53.38 MB)14 Python - Best Random Forest Model.mp4 (41.46 MB)15 Python - Feature Importance.mp4 (55.93 MB)16 Python - Charting a Great Plot Part 1.mp4 (91.5 MB)17 Python - Charting a Great Plot Part 2.mp4 (42.32 MB)18 Python - Charting a Great Plot Part 3.mp4 (96.14 MB)19 Key Learnings and Outcomes Random Forest.mp4 (21.53 MB)2 Random Forest and Ensemble Learning.mp4 (54.47 MB)3 How Decision Trees Work.mp4 (15.82 MB)4 Python - Setup.mp4 (57.87 MB)5 Python - Data Processing.mp4 (69.53 MB)6 Python - Correlation Heatmap.mp4 (116.42 MB)7 Python - Training and Test Set.mp4 (69.16 MB)8 Python - Random Forest.mp4 (21.2 MB)9 Evaluation metrics for Classication Problems Part 1.mp4 (59.32 MB)10 SHAP Values.mp4 (6.18 MB)11 Python - XGBoost Setup.mp4 (130.6 MB)12 Python - Data Processing.mp4 (98.73 MB)13 Python - First XGBoost Model.mp4 (137.2 MB)14 Python - Evaluating XGBoost Model.mp4 (186.28 MB)15 Python - Evaluating XGBoost Model part 2.mp4 (90.16 MB)16 Python - Building Functions for Binary Model Assessment.mp4 (39.23 MB)17 Python - Data Processing Part 2.mp4 (82.05 MB)18 Python - Second XGBoost Model.mp4 (52.06 MB)19 Random Parameter Tuning.mp4 (16.19 MB)2 Problem Statement.mp4 (28.69 MB)20 Python - Parameter Tuning.mp4 (158.6 MB)21 Python - Final XGBoost Model.mp4 (136.35 MB)22 Python - SHAP Importance and Summary Plot.mp4 (67.77 MB)23 Python - SHAP Dependence and Force Plots.mp4 (90.46 MB)24 Python - SHAP Waterfall and Cohort Deep Dives.mp4 (74.22 MB)25 R - Loading and inspecting data.mp4 (31.26 MB)26 R - Isolating numerical variables.mp4 (18.85 MB)27 R - Summary Statistics and Correlation Matrix.mp4 (17.95 MB)28 R - Preparing first dataset.mp4 (8.33 MB)29 R - Training and test set.mp4 (18.6 MB)3 Introducing XGBoost.mp4 (10.47 MB)30 R - Isolating X and Y variables.mp4 (34.82 MB)31 R - Setting XGBoost Parameters.mp4 (31.93 MB)32 R - Parallel Processing.mp4 (7.42 MB)33 R - Running XGBoost.mp4 (18.98 MB)34 R - Predicting with XGBoost.mp4 (16.66 MB)35 R - Confusion Matrix.mp4 (22.18 MB)36 R - Transforming factors into numerical variables.mp4 (18.88 MB)37 R - Preparing final dataset.mp4 (14.61 MB)38 R - Second XGBoost model.mp4 (12.02 MB)39 R - Predictions and Confusion Matrix part 2.mp4 (7.29 MB)4 How XGBoost works.mp4 (10.65 MB)40 R - Start Parallel Processing.mp4 (10 MB)41 R - Cross Validation inputs.mp4 (11.12 MB)42 R - Cross Validation Parameters.mp4 (10.98 MB)43 R - Parameters to tune.mp4 (39.48 MB)44 R - Parameter Tuning round 1.mp4 (61.18 MB)45 R - Parameter Tuning round 2.mp4 (57 MB)46 R - Final XGBoost model.mp4 (19.2 MB)47 R - Business Perspective.mp4 (58.37 MB)48 R - Importance Drivers and SHAP Values.mp4 (36.67 MB)5 XGBoost quirks.mp4 (3.48 MB)6 Dummy variable trap.mp4 (6.43 MB)7 Root Square Mean Error.mp4 (3.97 MB)8 Variance vs Bias trade off.mp4 (6.09 MB)9 Parameter tuning and Cross Validation.mp4 (7.81 MB)1 Game Plan for CrewAI.mp4 (60.58 MB)2 CrewAI.mp4 (35.11 MB)3 Python - CrewAI Setup.mp4 (113.68 MB)4 Python - First AI Agent.mp4 (84.24 MB)5 Python - Task and AI Crew.mp4 (111.24 MB)6 Python - Second AI Agent and Task.mp4 (72.32 MB)7 Python - Third AI Agent.mp4 (129.86 MB)]ScreenshotAusFilehttps://ausfile.com/yog7k58twqwthttps://ausfile.com/nhd43l4liyzfhttps://ausfile.com/l8maaqfb2ceohttps://ausfile.com/waq57i3zez7chttps://ausfile.com/mmy7q8lvv67chttps://ausfile.com/6onlnw9glnhdhttps://ausfile.com/t8kx8ivvvgzihttps://ausfile.com/ec4jrvqmrurbhttps://ausfile.com/u4lrdchdjcpxRapidGatorhttps://rapidgator.net/file/4716a4028b83c380aca874c947262a20/https://rapidgator.net/file/1e21c1cffd73d75bcd6c0a129a1f20e2/https://rapidgator.net/file/52de64792de96524715468cf22f8cff0/https://rapidgator.net/file/63a0fff8ff5e019556a9a756eac015bf/https://rapidgator.net/file/98e70b92f1eab0ba1ce964fda3a85116/https://rapidgator.net/file/9b1b94f337ae6e586b30ecf38c7b6683/https://rapidgator.net/file/c47de0210ba170ce13c5644adfa97683/https://rapidgator.net/file/664f0ca65af4d221dd4d3f989fbcd438/https://rapidgator.net/file/f8b9d99de40fc11723a38a543bb7637c/ Link to comment Share on other sites More sharing options...
Recommended Posts
Please sign in to comment
You will be able to leave a comment after signing in
Sign In Now