riversongs Posted January 16, 2024 Report Share Posted January 16, 2024 Free Download Supervised Machine Learning In Python by EDUCBA Bridging the GapPublished 1/2024MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHzLanguage: English | Size: 5.78 GB | Duration: 8h 22mA practical course about supervised machine learning using Python programming languageWhat you'll learnPython BasicsMachine Learning Algorithms like Regression, Classification, Naive Bayes Classifier, Decision Tree, Support Vector Machine Algorithm etc..Machine learning Concept and Different types of Machine LearningData Science libraries like Numpy , Pandas , Matplotlib, Scipy, Scikit Learn, Seaborn , Plotly and many moreRequirementsPython porgramming language and Data pre-processing techniquesDescriptionIn this practical course, we are going to focus on supervised machine learning and how to apply it in Python programming language. Supervised machine learning is a branch of artificial intelligence whose goal is to create predictive models starting from a dataset. With the proper optimization of the models, it is possible to create mathematical representations of our data in order to extract the information that is hidden inside our database and use it for making inferences and predictions.A very powerful use of supervised machine learning is the calculation of feature importance, which makes us better understand the information behind data and allows us to reduce the dimensionality of our problem considering only the relevant information, discarding all the useless variables. A common approach for calculating feature importance is the SHAP technique.In the realm of cutting-edge technology, machine learning stands at the forefront, revolutionizing industries and transforming the way we interact with the world. From personalized recommendations to autonomous vehicles, machine learning empowers computers to learn from vast amounts of data and make intelligent decisions. If you've ever been captivated by the idea of building intelligent systems, understanding the prerequisites for machine learning is your essential first step.Embarking on a journey into machine learning requires a solid foundation in several key areas. As with any endeavor, building upon a sturdy groundwork paves the way for success. Let us unveil the prerequisites that will equip you with the skills to unravel the mysteries of machine learning and harness its potential to shape the future.Data Science libraries like Numpy , Pandas , Matplotlib, Scipy, Scikit Learn, Seaborn , Plotly and many moreMachine learning Concept and Different types of Machine LearningMachine Learning Algorithms like Regression, Classification, Naive Bayes Classifier, Decision Tree, Support Vector Machine Algorithm etc..Feature engineeringPython BasicsOverviewSection 1: Supervised Machine Learning in PythonLecture 1 Introduction to Machine LearningLecture 2 Advantages and Disadvantages of Machine LearningLecture 3 NumPy IntroductionLecture 4 Features and InstallationLecture 5 NumPy Array CreationLecture 6 NumPy Array AttributesLecture 7 NumPy Array OperationsLecture 8 NumPy Array Operations ContinueLecture 9 NumPy Array Unary OperationsLecture 10 Numpy Array SplicingLecture 11 NumPy Array ShpeLecture 12 Stacking Together Different ArraysLecture 13 Splitting one Array into Several Smaller onesLecture 14 Copies and ViewsLecture 15 NumPy Array IndexingLecture 16 NumPy Array Indexing ContinueLecture 17 NumPy Array BooleanLecture 18 Introduction to MatlplotlibLecture 19 Understanding Various Functions of PyplotLecture 20 Multiple Figures and SubplotsLecture 21 Intro to PandasLecture 22 Intro to Pandas ContinueLecture 23 Data Structure in PandasLecture 24 Data Structure in Pandas ContinueLecture 25 Pandas Column SelectLecture 26 Remove OperationsLecture 27 Pandas Arithmetic OperationsLecture 28 Pandas Arithmetic Operations ContinueLecture 29 Introduction to Scikit LearnLecture 30 SupervisedLecture 31 Unsupervised LearningLecture 32 Load Data SetLecture 33 Scikit Example DigitsLecture 34 Digits Dataset Using MatplotlibLecture 35 Understading Metrics of Predicted Digits DatasetLecture 36 Persisting ModelsLecture 37 K-NN Algorithm with ExampleLecture 38 Cross ValidationLecture 39 Cross Validation TechniquesLecture 40 K-Means Clustering ExampleLecture 41 AgglomerationLecture 42 PCA PipelineLecture 43 Face RecognitionLecture 44 Face Recognition OutputLecture 45 Right EstimatorLecture 46 Text Data ExampleLecture 47 Extracting FeaturesLecture 48 Occurrences to FrequenciesLecture 49 Classifier TrainingLecture 50 Performance Analysis on the Test SetLecture 51 Parameter TuningLecture 52 Language IdentifcationLecture 53 Movie Review Screen StreamLecture 54 Movie Review Screen Stream ContinuePython developers, Data Scientists, Computer engineers, Researchers StudentsHomepagehttps://www.udemy.com/course/supervised-machine-learning-in-python-w/Download ( Rapidgator )https://rg.to/file/e5714090a86d5c6aa05ec354d995ec66/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part1.rar.htmlhttps://rg.to/file/ac5314989d941e9cb7f70f54cd678512/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part2.rar.htmlhttps://rg.to/file/fef94fe539bd04a5f220f190ba8249c2/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part3.rar.htmlhttps://rg.to/file/c242582b0c7debf382da1b653b0ab197/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part4.rar.htmlhttps://rg.to/file/c3b64206ac94900e838f944160bcc459/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part5.rar.htmlhttps://rg.to/file/f38c9242c01d8ed15b47e9b0003d4f01/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part6.rar.htmlUploadgighttps://uploadgig.com/file/download/B520aED205d79e10/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part1.rarhttps://uploadgig.com/file/download/614e13560723144d/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part2.rarhttps://uploadgig.com/file/download/e0fa546D7A7c07b7/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part3.rarhttps://uploadgig.com/file/download/ac52b9D5D07162fe/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part4.rarhttps://uploadgig.com/file/download/aBc0CefC3462b6aD/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part5.rarhttps://uploadgig.com/file/download/559bf31c783724e5/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part6.rarDownload ( NitroFlare )https://nitroflare.com/view/C63103A3E1E5417/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part1.rarhttps://nitroflare.com/view/33D42CAE8683121/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part2.rarhttps://nitroflare.com/view/B09263B34C318E1/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part3.rarhttps://nitroflare.com/view/9F563AF1B61617C/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part4.rarhttps://nitroflare.com/view/103D1A6C4E6D44D/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part5.rarhttps://nitroflare.com/view/E6D37B33CD918E2/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part6.rarFikperhttps://fikper.com/doSigt8z5e/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part1.rar.htmlhttps://fikper.com/068yU5nnHO/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part2.rar.htmlhttps://fikper.com/vDksJUb0Hw/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part3.rar.htmlhttps://fikper.com/0EfWZctLLg/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part4.rar.htmlhttps://fikper.com/gcdF3xurCs/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part5.rar.htmlhttps://fikper.com/UXNWYyRQrO/wfbpr.Supervised.Machine.Learning.In.Python.by.EDUCBA.Bridging.the.Gap.part6.rar.htmlNo Password - Links are Interchangeable Link to comment Share on other sites More sharing options...
Recommended Posts
Please sign in to comment
You will be able to leave a comment after signing in
Sign In Now