lovewarez Posted September 5, 2021 Report Share Posted September 5, 2021 Algorithmic Trading: Backtest, Optimize & Automate in Python (2021) MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch Genre: eLearning | Language: English + srt | Duration: 32 lectures (47m) | Size: 986 MB Learn How to Use and Manipulate Open Source Code in Python so You can Fully Automate a Cryptocurrency Trading Strategy What you'll learn: Use Python to Automate your Cryptocurrency Trading Optimize your Strategy to Find the Best Parameters to Use Connect to Multiple Cryptocurrency Exchanges Use Open Source Code Freqtrade Load Historical Data and Backtest your Strategy Run the Strategy in Simulation or Live Be able to work on a Virtual Environment Communicate with the Strategy through your Phone Requirements Some Basic Programming knowledge (Any language) Basic Cryptocurrency Trading Knowledge Description Welcome to Python for Financial Analysis and Algorithmic Trading! Are you interested in how people use Python to conduct rigorous financial analysis and pursue algorithmic trading, then this is the right course for you! This course will guide you through everything you need to know to use Python for Finance and Algorithmic Trading! We'll start off by learning the fundamentals of Python, and then proceed to learn about the various core libraries used in the Py-Finance Ecosystem, including jupyter, numpy, pandas, matplotlib, statsmodels, zipline, Quantopian, and much more! Since the public release of Alpaca's commission-free trading API, many developers and tech-savvy people have joined our community slack to discuss various aspects of automated trading. We are excited to see many have already started running algorithms in production, while others are testing their algorithms with our paper trading feature, which allows users to play with our API in a real-time simulation environment. When we started thinking about a trading API service earlier this year, we were looking at only a small segment of algo trading. However, the more users we talked with, the more we realized there are many use cases for automated trading, particularly when considering different time horizons, tools, and objectives. Today, as a celebration of our public launch and as a welcome message to our new users, we would like to highlight various automated trading strategies to provide you with ideas and opportunities you can explore for your own needs. We'll cover the following topics used by financial professionals: Python Fundamentals NumPy for High Speed Numerical Processing Pandas for Efficient Data Analysis Matplotlib for Data Visualization Using pandas-datareader and Quandl for data ingestion Pandas Time Series Analysis Techniques Stock Returns Analysis Cumulative Daily Returns Volatility and Securities Risk EWMA (Exponentially Weighted Moving Average) Statsmodels ETS (Error-Trend-Seasonality) ARIMA (Auto-regressive Integrated Moving Averages) Auto Correlation Plots and Partial Auto Correlation Plots Sharpe Ratio Portfolio Allocation Optimization Efficient Frontier and Markowitz Optimization Types of Funds Order Books Short Selling Capital Asset Pricing Model Stock Splits and Dividends Efficient Market Hypothesis Algorithmic Trading with Quantopian Futures Trading Who this course is for How to use freqtrade (it's an open source code) Use a Virtual Machine (we provide you one with all the code on it, all you need to do is download it) Learn How to code any strategy in freqtrade (We show you how to code a strategy and show you a repository with other strategies) Backtest a strategy so you can see how it would have performed in the past Optimize a strategy to find the best parameters to get the best reward/risk ratio Do a walk-forward analysis to see how a strategy would perform with out-of-sample data (to minimize overfitting) Run the strategy with paper money (Extremely important step, in order to test out your code without risking any real capital) Run the strategy with real money https://ddownload.com/scvjtlar8v32/_Algorithmic_Trading_Backtest,_Optimize_%2526_Automate_in_Python.rar https://nitro.download/view/A79ABDBE48112B3/_Algorithmic_Trading_Backtest%2C_Optimize_%26_Automate_in_Python.rar https://rapidgator.net/file/9e8c7e9ddbb03c22ffdc8e14bafc6e28/_Algorithmic_Trading_Backtest,_Optimize_&_Automate_in_Python.rar.html https://uploadgig.com/file/download/a9e1Cbd2c27Ec32a/_Algorithmic_Trading_Backtest_Optimize__Automate_in_Python.rar Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now